Predicting fracture mechanisms in synthetic foam sandwiches with multi-layered cores using extended cohesive damage model
نویسندگان
چکیده
منابع مشابه
Fracture of a model cohesive granular material.
We study experimentally the fracture mechanisms of a model cohesive granular medium consisting of glass beads held together by solidified polymer bridges. The elastic response of this material can be controlled by changing the cross-linking of the polymer phase, for example. Here we show that its fracture toughness can be tuned over an order of magnitude by adjusting the stiffness and size of t...
متن کاملA phase-field model for cohesive fracture
In this paper a phase-field model for cohesive fracture is developed. After casting the cohesive zone approach in an energetic framework, which is suitable for incorporation in phase-field approaches, the phase-field approach to brittle fracture is recapitulated. The approximation to the Dirac function is discussed with particular emphasis on the Dirichlet boundary conditions that arise in the ...
متن کاملMulti-Level hp-Adaptivity for Cohesive Fracture Modeling
Discretization induced oscillations in the load-displacement curve are a well known problem for simulations of cohesive crack growth with finite elements. The problem results from an insufficient resolution of the complex stress state within the cohesive zone ahead of the crack tip. This work demonstrates that the hp-version of the finite element method is ideally suited to resolve this complex...
متن کاملCohesive-Length Scales for Damage and Toughening Mechanisms
While toughening and damage might seem to be two contradictory concepts for the mechanics of crack growth, they are actually the same phenomena perceived from two different vantage points. Similarly, the concepts of extrinsic and intrinsic toughening, defined in terms of whether a toughening mechanism occurs behind or ahead of a crack, depend on the definition of a crack tip that, in the absenc...
متن کاملmodeling of hydraulic fracture problem in partially saturated porous media using cohesive zone model
in this paper, a finite element model is developed for the fully hydro-mechanical analysis of hydraulic fracturing in partially saturated porous media. the model is derived from the framework of generalized biot theory. the fracture propagation is governed by a cohesive fracture model. the flow within the fracture zone is modeled by the lubrication equation. the displacement of solid phase, and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Engineering Fracture Mechanics
سال: 2020
ISSN: 0013-7944
DOI: 10.1016/j.engfracmech.2019.106719